Interim Estimates of 2022–23 Seasonal Influenza Vaccine Effectiveness

Wisconsin, October 2022-February 2023

Huong Q. McLean, PhD; Joshua G. Petrie, PhD; Kayla E. Hanson, MPH; Jennifer K. Meece, PhD; Melissa A. Rolfes, PhD; Gregg C. Sylvester, MD; Gabriele Neumann, PhD; Yoshihiro Kawaoka, DVM, PhD; Edward A. Belongia, MD

Disclosures

Morbidity and Mortality Weekly Report. 2023;72(8):201-205. 

In This Article

Abstract and Introduction

Introduction

In the United States, 2022–23 influenza activity began earlier than usual, increasing in October 2022, and has been associated with high rates of hospitalizations among children*.[1] Influenza A(H3N2) represented most influenza viruses detected and subtyped during this period, but A(H1N1)pdm09 viruses cocirculated as well. Most viruses characterized were in the same genetic subclade as and antigenically similar to the viruses included in the 2022–23 Northern Hemisphere influenza vaccine.[1,2] Effectiveness of influenza vaccine varies by season, influenza virus subtype, and antigenic match with circulating viruses. This interim report used data from two concurrent studies conducted at Marshfield Clinic Health System (MCHS) in Wisconsin during October 23, 2022–February 10, 2023, to estimate influenza vaccine effectiveness (VE). Overall, VE was 54% against medically attended outpatient acute respiratory illness (ARI) associated with laboratory-confirmed influenza A among patients aged 6 months–64 years. In a community cohort of children and adolescents aged <18 years, VE was 71% against symptomatic laboratory-confirmed influenza A virus infection. These interim analyses indicate that influenza vaccination substantially reduced the risk for medically attended influenza among persons aged <65 years and for symptomatic influenza in children and adolescents. Annual influenza vaccination is the best strategy for preventing influenza and its complications. CDC recommends that health care providers continue to administer annual influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating.[2]

VE against medically attended influenza was estimated using a test-negative case-control design. Patients aged 6 months–64 years were actively recruited during or after outpatient medical care for ARI (i.e., telehealth, primary care, urgent care, or emergency department), and before or during appointments for clinical testing for SARS-CoV-2 at selected MCHS facilities. Patients were eligible if they had a cough of ≤7 days' duration and had not taken an influenza antiviral medication. Participants completed a brief survey and provided a respiratory specimen for influenza and SARS-CoV-2 testing. Participants who received a positive real-time reverse transcription–polymerase chain reaction (RT-PCR) test result for SARS-CoV-2 were excluded from VE estimation. Participants were considered vaccinated if MCHS health records indicated receipt of seasonal influenza vaccine according to Advisory Committee on Immunization Practices (ACIP) recommendations ≥14 days before illness onset.[2] VE against influenza A viruses and against influenza A(H3N2) viruses was estimated as 100% x (1 − adjusted odds ratio [aOR]). The aOR is the ratio of the odds of vaccination among those who received a positive influenza test result (case-patients) to the odds of vaccination among those who received negative test results for influenza and SARS-CoV-2 (control-patients). Estimates were adjusted for age, month of illness onset, and self-reported presence of one or more higher-risk condition§ using logistic regression.

VE against symptomatic influenza in children and adolescents was estimated from an ongoing, prospective, community-cohort study in central Wisconsin.[3] Each week, participants (or their guardians) reported the absence or presence of specific symptoms during the previous 7 days. An anterior nasal swab was self- or guardian-collected for research testing when participants reported one or more of the following: fever, cough, loss of smell or taste, sore throat, muscle or body aches, shortness of breath, diarrhea, nasal congestion or runny nose, or nausea or vomiting. Influenza infection was defined as a positive result from research testing or a positive result from clinical testing (results extracted from MCHS health records). Unvaccinated person-time was defined as the time from October 23, 2022 (7 days before occurrence of the first influenza case), until receipt of seasonal influenza vaccine. Vaccinated person-time began ≥14 days after receipt of influenza vaccine (based on health records) according to ACIP recommendations. Person-time for the 13 days after receipt of vaccine was excluded from the analysis. Hazard ratios comparing the rate of influenza A virus infection among vaccinated and unvaccinated participants were estimated using Cox proportional hazards models with time-varying influenza vaccination status, age, the presence of one or more higher-risk condition, and COVID-19 vaccination status. VE was estimated as 100% x (1 − adjusted hazard ratio). Influenza and SARS-CoV-2 RT-PCR testing and genetic characterization of influenza-positive specimens for both studies were performed at MCHS research laboratory. Protocols for both studies were reviewed and approved by the Institutional Review Board at MCHS and were conducted consistent with applicable federal law and CDC policy.

During December 2, 2022–February 10, 2023, a total of 545 children, adolescents, and adults with medically attended ARI were included in the test-negative design case-control study; 116 (21%) received a positive test result for influenza A virus, and none received a positive test result for influenza B virus. Among 115 (99%) influenza A virus subtypes determined, 29 (25%) were A(H1N1)pdm09 viruses, and 86 (75%) were A(H3N2) viruses (Table 1). All of the 43 characterized viruses were genetically similar to vaccine components; 34 A(H3N2) viruses belonged to subclade 2a.2 and nine A(H1N1)pdm09 viruses belonged to subclade 5a.2. The proportion of patients with influenza differed by month of illness onset. Among ARI patients, 186 (34%) had documentation of receipt of 2022–23 influenza vaccine; the percentage vaccinated differed by sex, higher-risk condition, and COVID-19 vaccination status. A large majority of vaccinated participants (84%) received cell culture–based vaccine (ccIIV4). Among the 116 participants who received a positive influenza test result, 26 (22%) received the 2022–23 seasonal influenza vaccine, compared with 160 (37%) of 429 participants who received negative test results for influenza and SARS-CoV-2 (Table 2). The overall adjusted VE against outpatient medically attended ARI associated with influenza A was 54% and 60% against influenza A(H3N2) viruses.

Among 241 community cohort participants aged 1–17 years, 94 (39%) had documented receipt of the 2022–23 influenza vaccine (Table 1); 84% received ccIIV4. Among community cohort participants who received the 2022–23 influenza vaccine, 65% had documentation of receipt of ≥2 COVID-19 vaccine doses. During October 23, 2022–February 10, 2023, 37 (15%) participants received a positive test result for influenza A virus infection; however, three of these occurred ≤14 days after influenza vaccination and were excluded from the study at the time of vaccination. Among the remaining 34 influenza virus infections included in the analysis, 29 were caused by A(H3N2),** one by A(H1N1)pdm09, and four by influenza A viruses with unknown subtype. Six children (18%) with influenza A had received the 2022–23 seasonal influenza vaccine. Among 15,678 unvaccinated person-days, 28 influenza A virus infections occurred (incidence = 1.79 per 1,000 person-days), and among 7,292 vaccinated person-days, six influenza A virus infections occurred (incidence = 0.82 per 1,000 person-days) (Table 2). VE against symptomatic influenza A virus infection was 71%.

*Routine influenza surveillance in the United States indicated that influenza viruses began to circulate and outpatient visits for influenza-like illness were increased above seasonal baseline levels in epidemiologic week 40 (the week ending October 8, 2022).
Persons aged ≥6 months are recommended to receive annual influenza vaccination. Certain children aged 6 months–8 years need 2 doses of influenza vaccine, depending on influenza vaccination history. Persons aged ≥9 years are recommended to receive 1 dose of influenza vaccine each year, regardless of influenza vaccination history. For the test-negative case-control design analysis, children aged 6 months–8 years were excluded if they needed 2 doses and, at the time of illness, they had received only 1 dose of influenza vaccine ≥14 days earlier, meaning that they were partially vaccinated. For the cohort study, children aged 6 months–8 years were excluded from the study at the time of the first dose if they needed 2 doses and they had received only 1 dose of influenza vaccine.
§Based on self-report of asthma or another chronic lung disease, cancer, diabetes, heart disease including high blood pressure, immunocompromising condition, kidney disease, liver disease, obesity, or pregnancy in the 12 months preceding the test-negative case-control study enrollment and self-report of asthma, immunocompromised state, serious heart condition, or other chronic lung disease for the community cohort study.
45 C.F.R. part 46; 21 C.F.R. part 56.
**Six A(H3N2) viruses from the community cohort study were genetically characterized and belonged to subclade 2a.2.

processing....